Open Access Article

International Journal of Materials Science. 2022; 4: (2) ; 1-11 ; DOI: 10.12208/j.ijms.20220006.

Design Strategies for Underwater Adhesion of Biomimetic Hydrogels

作者: 卜轶卓, 赵昕昕, 胡大涛, 温金鹏, 张雨晨, 刘开来, 王珂 *

西安交通大学药学院 陕西西安

*通讯作者: 王珂,单位:西安交通大学药学院 陕西西安;

发布时间: 2022-09-14 总浏览量: 1095



关键词: 仿生;黏附;水凝胶


The physical properties of hydrogels are similar to those of biological tissues, with excellent biocompatibility. And the research in the field of medicine is becoming more and more in-depth. At the same time, higher requirements are also put forward for the performance of hydrogels. Achieving hydrogel bonding in a watery environment is challenging, but at the same time has great promise. The natural world often brings many inspirations to human production and scientific research. In nature, there are many organisms that, to resist the effects of the complex environment, usually adhere to the surface of the medium to ensure their safety and survival, thanks to the special secretion chemical composition and/or microstructure of the biological surface that achieves adhesion. To better understand the mechanism of action of underwater adhesive materials, this paper briefly summarizes the design strategies of underwater adhesives inspired by nature in recent years. This article discusses the adhesion mechanisms of animals, including mussels, barnacles, sandcastle worms, slugs, tree frogs, octopuses, and plants such as ivy and reptile tigers, as well as biomimetic strategies inspired by them. Finally, the shortcomings and future development trends of biomimetic underwater adhesion are also prospected.

Key words: Biomimetic;adhesion; Hydrogel

参考文献 References

[1] Der Hydrogel und das kristallinische Hydrat des Kupferoxydes: Bemmelen, J. M., (Néerl. 30, 1–24; 1896)[J/OL]. Zeitschrift für Chemie und Industrie der Kolloide, 1907, 1(7): 213-214. 

[2] ZHANG W, WANG R, SUN Z, et al. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications[J/OL]. Chemical Society Reviews, 2020, 49(2): 433-464. 

[3] WICHTERLE O, LÍM D. Hydrophilic Gels for Biological Use[J/OL]. Nature, 1960, 185(4706): 117-118.

[4] FAN H, GONG J P. Fabrication of Bioinspired Hydrogels: Challenges and Opportunities[J/OL]. Macromolecules, 2020, 53(8): 2769-2782. 

[5] MA X, ZHOU X, DING J, et al. Hydrogels for underwater adhesion: adhesion mechanism, design strategies and applications[J/OL]. Journal of Materials Chemistry A, 2022, 10(22): 11823-11853. 

[6] PRIEMEL T, PALIA G, FÖRSTE F, et al. Microfluidic-like fabrication of metal ion–cured bioadhesives by mussels[J/OL]. Science, 2021, 374(6564): 206-211.

[7] WAITE J H. Mussel adhesion – essential footwork[J/OL]. Journal of Experimental Biology, 2017, 220(4): 517-530.

[8] SILVERMAN H G, ROBERTO F F. Understanding Marine Mussel Adhesion[J/OL]. Marine Biotechnology, 2007, 9(6): 661-681. 

[9] WAITE J H, TANZER M L. Polyphenolic Substance of Mytilus edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline[J/OL]. Science (New York, N.Y.), 1981, 212(4498): 1038-1040. 

[10] MAIER G P, RAPP M V, WAITE J H, et al. BIOLOGICAL ADHESIVES. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement[J/OL]. Science (New York, N.Y.), 2015, 349(6248): 628-632.

[11] OU X, XUE B, LAO Y, et al. Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability[J/OL]. Science Advances, 2020, 6(39): eabb7620. 

[12] QURESHI D A, GOFFREDO S, KIM Y, et al. Why mussel byssal plaques are tiny yet strong in attachment[J/OL]. Matter, 2022, 5(2): 710-724.

[13] LI L, ZENG H. Marine mussel adhesion and bio-inspired wet adhesives[J/OL]. Biotribology, 2016, 5:44-51.

[14] HOFMAN A H, VAN HEES I A, YANG J, et al. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox[J/OL]. Advanced Materials, 2018, 30(19): 1704640. 

[15] ZHANG C, WU B, ZHOU Y, et al. Mussel-inspired hydrogels: from design principles to promising applications[J/OL]. Chemical Society Reviews, 2020, 49(11): 3605-3637. 

[16] XUE B, GU J, LI L, et al. Hydrogel tapes for fault-tolerant strong wet adhesion[J/OL]. Nature Communications, 2021, 12(1): 7156. 

[17] GRECA L G, LEHTONEN J, TARDY B L, et al. Biofabrication of multifunctional nanocellulosic 3D structures: a facile and customizable route[J/OL]. Materials Horizons, 2018, 5(3): 408-415. 

[18] ROCHA M, ANTAS P, CASTRO L F C, et al. Comparative Analysis of the Adhesive Proteins of the Adult Stalked Goose Barnacle Pollicipes pollicipes (Cirripedia: Pedunculata)[J/OL]. Marine Biotechnology (New York, N.Y.), 2019, 21(1): 38-51.

[19] WANG Z, LEARY D H, LIU J, et al. Molt-dependent transcriptomic analysis of cement proteins in the barnacle Amphibalanus amphitrite[J/OL]. BMC genomics, 2015, 16: 859. 

[20] KAMINO K, NAKANO M, KANAI S. Significance of the conformation of building blocks in curing of barnacle underwater adhesive[J/OL]. The FEBS journal, 2012, 279(10): 1750-1760. 

[21] JONKER J L, MORRISON L, LYNCH E P, et al. The chemistry of stalked barnacle adhesive (Lepas anatifera)[J/OL]. Interface Focus, 2015, 5(1): 20140062.

[22] URUSHIDA Y, NAKANO M, MATSUDA S, et al. Identification and functional characterization of a novel barnacle cement protein[J/OL]. The FEBS journal, 2007, 274(16): 4336-4346. 

[23] LO PRESTI M, RIZZO G, FARINOLA G M, et al. Bioinspired Biomaterial Composite for All-Water-Based High-Performance Adhesives[J/OL]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(16): e2004786. 

[24] FAN H, WANG J, GONG J P. Barnacle Cement Proteins‐Inspired Tough Hydrogels with Robust, Long‐Lasting, and Repeatable Underwater Adhesion[J/OL]. Advanced Functional Materials, 2021, 31(11): 2009334. 

[25] PAN G, LI F, HE S, et al. Mussel‐ and Barnacle Cement Proteins‐Inspired Dual‐Bionic Bioadhesive with Repeatable Wet‐Tissue Adhesion, Multimodal Self‐Healing, and Antibacterial Capability for Nonpressing Hemostasis and Promoted Wound Healing[J/OL]. Advanced Functional Materials, 2022, 32(25): 2200908. 

[26] STEWART R J, WEAVER J C, MORSE D E, et al. The tube cement of Phragmatopoma californica: a solid foam[J/OL]. Journal of Experimental Biology, 2004, 207(26): 4727-4734. 

[27] HOFMAN A H, VAN HEES I A, YANG J, et al. Bioinspired Underwater Adhesives by Using the Supramolecular Toolbox[J/OL]. Advanced Materials (Deerfield Beach, Fla.), 2018, 30(19): e1704640. 

[28] RJ S, CS W, H S. Complex coacervates as a foundation for synthetic underwater adhesives[J/OL]. Advances in colloid and interface science, 2011, 167(1-2)[2022-07-18]. 

[29] ZHANG D, LIU J, CHEN Q, et al. A sandcastle worm-inspired strategy to functionalize wet hydrogels[J/OL]. Nature Communications, 2021, 12(1): 6331. 

[30] PAWLICKI J M, PEASE L B, PIERCE C M, et al. The effect of molluscan glue proteins on gel mechanics[J/OL]. The Journal of Experimental Biology, 2004, 207(Pt 7): 1127-1135. 

[31] SMITH A M. The Biochemistry and Mechanics of Gastropod Adhesive Gels[M/OL]//SMITH A M, CALLOW J A. Biological Adhesives. Berlin, Heidelberg: Springer, 2006: 167-182[2022-07-21]. 

[32] WILKS A M, RABICE S R, GARBACZ H S, et al. Double-network gels and the toughness of terrestrial slug glue[J/OL]. Journal of Experimental Biology, 2015, 218(19): 3128-3137. 

[33] BRAUN M, MENGES M, OPOKU F, et al. The relative contribution of calcium, zinc and oxidation-based cross-links to the stiffness of Arion subfuscus glue[J/OL]. The Journal of Experimental Biology, 2013, 216(Pt 8): 1475-1483. 

[34] LI J, CELIZ A D, YANG J, et al. Tough Adhesives for Diverse Wet Surfaces[J/OL]. Science (New York, N.Y.), 2017, 357(6349): 378-381. 

[35] ZHANG L, CHEN H, GUO Y, et al. Micro–Nano Hierarchical Structure Enhanced Strong Wet Friction Surface Inspired by Tree Frogs[J/OL]. Advanced Science, 2020, 7(20): 2001125. 

[36] CHEN H, ZHANG L, ZHANG D, et al. Bioinspired Surface for Surgical Graspers Based on the Strong Wet Friction of Tree Frog Toe Pads[J/OL]. ACS applied materials & interfaces, 2015, 7(25): 13987-13995. 

[37] ZHANG B, JIA L, JIANG J, et al. Biomimetic Microstructured Hydrogels with Thermal-Triggered Switchable Underwater Adhesion and Stable Antiswelling Property[J/OL]. ACS applied materials & interfaces, 2021, 13(30): 36574-36586. 

[38] TRAMACERE F, BECCAI L, KUBA M, et al. The morphology and adhesion mechanism of Octopus vulgaris suckers[J/OL]. PloS One, 2013, 8(6): e65074. 

[39] BAIK S, KIM D W, PARK Y, et al. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi[J/OL]. Nature, 2017, 546(7658): 396-400.

[40] LENAGHAN S C, ZHANG M. Real-time observation of the secretion of a nanocomposite adhesive from English ivy (Hedera helix)[J/OL]. Plant Science: An International Journal of Experimental Plant Biology, 2012, 183: 206-211.

[41] HUANG Y, WANG Y, TAN L, et al. Nanospherical arabinogalactan proteins are a key component of the high-strength adhesive secreted by English ivy[J/OL]. Proceedings of the National Academy of Sciences, 2016, 113(23): E3193-E3202.

[42] LI Q, SONG W, LI J, et al. Bioinspired super-strong aqueous synthetic tissue adhesives[J/OL]. Matter, 2022, 5(3): 933-956. 

[43] XI S, TIAN F, WEI G, 等. Reversible Dendritic‐Crystal‐Reinforced Polymer Gel for Bioinspired Adaptable Adhesive[J/OL]. Advanced Materials, 2021, 33(40): 2103174.

[44] BOWLING A J, VAUGHN K C. Structural and immunocytochemical characterization of the adhesive tendril of Virginia creeper (Parthenocissus quinquefolia [L.] Planch.)[J/OL]. Protoplasma, 2008, 232(3-4): 153-163.

[45] TAN D, WANG X, LIU Q, et al. Switchable Adhesion of Micropillar Adhesive on Rough Surfaces[J/OL]. Small, 2019, 15(50): 1904248. 

[46] HOSODA N, GORB S N. Underwater locomotion in a terrestrial beetle: combination of surface de-wetting and capillary forces[J/OL]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1745): 4236-4242. 

[47] WANG Y, ZHANG L, GUO Y, et al. Air Bubble Bridge-Based Bioinspired Underwater Adhesion[J/OL]. Small, 2021, 17(42): 2103423. 


卜轶卓, 赵昕昕, 胡大涛, 温金鹏, 张雨晨, 刘开来, 王珂, 水下黏附仿生水凝胶的设计策略[J]. 国际材料科学通报, 2022; 4: (2) : 1-11.