期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

International Journal of Materials Science. 2024; 6: (1) ; 6-11 ; DOI: 10.12208/j.ijms.20240002.

Preparation and lithium storage properties of skewer-based carbon materials
竹签基碳材料的制备及储锂性能研究

作者: 夏元浩1, 李霁云2, 马超1 *

1 上海交通大学国家电投智慧能源创新学院 上海

2 上海卫星工程研究所 上海

*通讯作者: 马超,单位: 上海交通大学国家电投智慧能源创新学院 上海;

发布时间: 2024-12-31 总浏览量: 79

摘要

日常生活中,竹签在餐饮行业中随处可见且使用量庞大,如何合理利用使用后的废旧竹签迫在眉睫。传统填埋与焚烧等处理方式会对环境产生极大危害。本文通过回收废旧竹签,采用一步法高温煅烧制备成碳基负极材料,并将其制作成电极,组装锂离子电池进行电化学循环性能测试。实验结果表明:在100 mA/g的电流密度下,首次放电比容量为326 mAh/g, 经过100次循环后,放电比容量依然较高的保持在260 mAh/g,表现出优越的循环稳定性及良好的电化学储锂性能。本研究为合理解决利用废旧竹签提供了一种新思路。

关键词: 竹签;负极材料;循环稳定性;锂离子电池

Abstract

In daily life, bamboo sticks are widely used in the catering industry resulting in significant waste. There is an urgent need to find sustainable methods for utilizing these discarded bamboo sticks. Traditional disposal methods, such as landfilling and incineration, can severely harm the environment. In this study, we focus on recycling waste bamboo sticks through a one-step high-temperature calcination process to prepare carbon-based anode materials. We fabricated electrodes and assembled lithium-ion batteries to conduct electrochemical cycling performance tests. The results indicate an initial discharge specific capacity of 326 mAh/g at a current density of 100 mA/g. After 100 cycles, the discharge specific capacity remains high at 260 mAh/g, demonstrating excellent cycling stability and effective lithium storage performance. This study provides a novel approach to the sustainable utilization of waste bamboo sticks.

Key words: Bamboo sticks; Anode material; Cycling stability; Lithium-ion battery

参考文献 References

[1] PANWAR N L, KAUSHIK S C, KOTHARI S. Role of renewable energy sources in environmental protection: A review [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15(3): 1513-24. 

[2] 王迪,谢晓华,夏保佳,等. 一氧化硅/碳/膨胀石墨用作锂离子电池负极材料 [J]. 电池, 2016, 46 (03): 121-124. 

[3] HONG S, KU J, PARK S, et al. Recycling of polyethylene via hydrothermal carbonization for the Li-ion battery anode [J]. CARBON LETTERS, 2024, 34(5): 1529-36. 

[4] 胡思思, 孙丽芝, 张迪, et al. Fe掺杂宣纸基碳纤维材料的储锂性能 [J]. 化工进展, 2021, 40(10): 5370-7.

[5] 张盛斌. 氮掺杂多孔碳锂离子电池负极材料的制备及其电化学性能 [D].天津理工大学,2024.

[6] 张稚国, 李华清, 王莉, 等. 锂离子电池塑料-金属复合集流体的特性及制备研究进展 [J]. 储能科学与技术, 2024, 13(3): 749-758.

[7] 马嘉玲,宋焕巧,何志宏,等.锂离子电容器负极材料的研究进展 [J].电池, 2024,54(1): 107-110.

[8] SHEN G Y, LI B C, XU Y Y, et al. Waste biomass garlic stem-derived porous carbon materials as high-capacity and long-cycling anode for lithium/sodium-ion batteries [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 653: 1588-99.

[9] 孟雅雯,赵增华.锂离子电池负极材料的回收与循环利用[J].环境保护与循环经济,2024,44(08): 1-5.

[10] 杨留超. 废弃酒糟衍生碳材料的制备及其作锂/钠/钾离子电池负极材料的性能研究 [D]. 成都大学, 2024.

[11] 刘士静, 陈丰, 查文珂, et al. 废旧锂离子电池回收工艺研究进展 [J]. 电池, 2023, 53(05): 582-5.

[12] 李尚远, 曹家军, 罗键, et al. 收集烟头制备锂离子电池负极材料 [J]. 西南师范大学学报(自然科学版), 2018, 43(05): 147-51.

[13] CHOI C, SEO S-D, KIM B-K, et al. Enhanced Lithium Storage in Hierarchically Porous Carbon Derived from Waste Tea Leaves [J]. Scientific Reports, 2016, 6(1): 39099. 

[14] LIU X, ZHANG S, WEN X, et al. High yield conversion of biowaste coffee grounds into hierarchical porous carbon for superior capacitive energy storage [J]. Scientific Reports, 2020, 10(1): 3518. 

[15] VELDEVI T, RAGHU S, KALAIVANI R A, et al. Waste tire derived carbon as potential anode for lithium-ion batteries [J]. Chemosphere, 2022, 288(1): 132438.

引用本文

夏元浩, 李霁云, 马超, 竹签基碳材料的制备及储锂性能研究[J]. 国际材料科学通报, 2024; 6: (1) : 6-11.