欢迎来到OAJRC平台!
登录 | 注册 | English
期刊目次
加入编委
添加您的邮件地址以接收即将发行期刊数据:
Open Access Article
International Journal of Materials Science. 2020; 2: (1) 1; 1-5 ; DOI: 10.12208/j.ijms.20200001.
厦门大学能源学院
*通讯作者: 刘 健,单位:厦门大学能源学院;
厦门大学新型冠状病毒防治应急科研攻关项目
发布时间: 2020-05-21 总浏览量: 2641
PDF 全文下载 引用本文
本文综述了石墨烯复合材料广谱抗病毒作用机制的研究,包括机械作用、电荷作用、非极性作用、特定基团作用等原理。石墨烯的理化特性与抑制病毒之间的关联原理,很有可能成为开发各类病毒的广谱克星的钥匙。因此,可以依据这些原理,合理选择载体,使氧化石墨烯按照合理方式负载,通过控制材料合成工艺,提升机械作用、电荷作用、非极性作用、特定基团作用等潜在功能,通过考察其带电性质等物化指标,推测其对抗病毒活性的影响,为设计广谱抗病毒石墨烯复合材料提供理论依据。
The research reviews the deepening of the broad-spectrum antiviral mechanism of graphene composites for providing the theoretical basis for the development of safe and effective broad-spectrum antiviral materials, including the principles of mechanical action, charging action, non-polar action, and specific group action. The correlation between the physicochemical properties of graphene and the inhibition of viruses is likely to become the key to the development of broad-spectrum busters of various viruses. Therefore, according to these principles, the carrier can be reasonably selected so that graphene oxide can be loaded in a reasonable manner. By controlling the material synthesis process, the potential functions such as mechanical action, charging action, non-polar action and specific group action can be improved. The physical and chemical indicators such as properties and its antiviral activity are speculated to provide a theoretical basis for designing broad-spectrum antiviral graphene composites.
[1] PILLAIYAR T, MANICKAN M, NAMASIVAYAM V, et al. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy[J].J Med Chem,2016 59 (6595) : 6628.
[2] KARYPIDOUA K, RIBONEBV SR, QUEVEDOB MA. et al. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents[J].Bioorganic & Medicinal Chemistry Letters 28 (2018) 3472–3476, .
[3] CHEN L, YE S, et al. An aqueous platinum nanotube based fluorescent immuno-assay for porcine reproductive and respiratory syndrome virus detection[J].Talanta,2015 (144) : 324-328.
[4] YE S, LI Z, CHEN F, et al. Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase,facilitates formation of vesicles and promotes the proliferation of attenuated PEDV[J].Virus Genes,2015a 51 (3) : 385-392.
[5] HUANG, X., YIN, Z., WU, S., et al. Graphene-based materials: synthesis,characterization, properties, and applications[J].Small 2011, 7, 1876-1902, .
[6] JANG, H., KIM, Y.K., KWON, H.M., et al. A graphene-based platform for the assay of duplex-DNA unwinding by helicase[J].Angew.Chem. Int. Ed. Engl,2010 49 : 5703-5707.
[7] GURUNATHAN S, HAN JW, ABDAL DA, et al. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa[J].Int J Nanomedicine,2012 7 : 5901-5914.
[8] LOH, K.P., BAO, Q., EDA, G., et al. Graphene oxide as a chemically tunable platform for optical applications.Nat. Chem,2010 2 : 1015-1024.
[9] LU C.H., YANG H.H., ZHU C.L., et al. A graphene platform for sensing biomolecules. Angew.Chem.Int. Ed. Engl,2009 48 : 4785-4787.
[10] LUO J., COTE L.J., TUNG V.C., et al. Graphene oxide nanocolloids. J. Am. Chem. Soc.2010 132 : 17667-17669.
[11] LIU S, HU M, et al. Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets[J].Langmuir,2012 28 (33) : 12364-12372.
[12] HAGEMEIJER MC, MONASTYSKA I, et al. Membrane rearrangements mediated by coronavirus nonstructural proteins 3 and 4 [J].Virology,2014 458 : 125-135.
[13] LIU S, ZENG TH, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J].ACS nano,2011 5 (9) : 6971-6980.
[14] PERREAULT F, De FARIA AF, et al. Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters[J] .ACS nano,2015b 9 (7) : 7226-7236.
[15] ZOU X, ZHANG L, et al. Mechanisms of the Antimicrobial Activities of Graphene Materials[J].Journal of the American Chemical Society,2016 138 (7) : 2064-2077.
[16] MU, Q., SU, G., LI, L., et al. Size-dependent cell uptake of protein coated graphene oxide nanosheets[J].ACS Appl. Mater. Interfaces,2012 4 : 2259-2266.
[17] 桂芳, 张卓然, 郑丛龙, 等. 消杀型纳米催化剂抗病毒作用的研究[J].中国病毒学,2005 20 (1) : 70-74.
[18] LIANG J, WEI J, et al.. Surfactant-Modified Nanoclay Exhibits an Antiviral Activity with High Potency and Broad Spectrum [J].Journal of Virology,2014 88 (8) : 4218-4228.
[19] YE S, SHAO K, Li Z, et al. Antiviral Activity of Graphene Oxide: How Sharp Edged Structure and Charge Matter[J].ACS Applied Materials & Interfaces,2015 7 (38) : 21571-9.
[20] TU Y, LV M, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J].Nature Nanotechnology,2013 8 (8) : 594-601.
[21] MAZUMDER S, GHOSAL P K, PUJOL C A, et al. Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta )[J].Internat J Biolog Macro -molec,2002 (9) : 87-95.
[22] MATSUHIRO B, CONTE A F, DAMONTE E B, et al. Structural analysis and antiviral activity of a sulfated gal actan from the red seaweed Schizymenia binderi (Gigartinales, Rhodophyta )[J].Carbohydr Res, (15) : 2392-2402.
[23] 向冬喜, 郑丛龙. 纳米抗菌材料抗病毒作用的研究进展[J].中国微生态学杂志,2009 21 (8) : 760-761.
[24] HU J, LIU J, et al. Surface-Modified Graphene Oxide-Based Cotton Fabric by Ion Implantation for Enhancing Antibacterial Activity[J].ACS Sustainable Chemistry & Engineering. 2019, DOI:10.1021/acssuschemeng.8b06361, .
[25] QIN G, LIU J, et al. Enhanced stability of antimicrobial bamboo fiber by launching ultra fine silver particles in SDS microemulsion system[J] .Textile Research Journal,2017 87 (20) : 2505-2512.
[26] 龙敏南, 秦光辉, 刘健, 甘礼惠. 一种负载纳米银抗菌纤维的制备方法, ZL2015109379569[P].授权公告日: 2017 年7 月4 日, .
入驻平台
回到首页
扫一扫,添加我们